Future technology: 10 ideas about to change our world


  1. Sweat powered smartwatches

Engineers at the University of Glasgow have developed a new type of flexible supercapacitor, which stores energy, replacing the electrolytes found in conventional batteries with sweat.

It can be fully charged with as little as 20 microlitres of fluid and is robust enough to survive 4,000 cycles of the types of flexes and bends it might encounter in use.

The device works by coating polyester cellulose cloth in a thin layer of a polymer, which acts as the supercapacitor’s electrode

As the cloth absorbs its wearer’s sweat, the positive and negative ions in the sweat interact with the polymer’s surface, creating an electrochemical reaction which generates energy.
Conventional batteries are cheaper and more plentiful than ever before but they are often built using unsustainable materials which are harmful to the environment," says Professor Ravinder Dahiya, head of the Bendable Electronics and Sensing Technologies (Best) group, based at the University of Glasgow’s James Watt School of Engineering.

“That makes them challenging to dispose of safely and potentially harmful in wearable devices, where a broken battery could spill toxic fluids on to skin.

“What we’ve been able to do for the first time is show that human sweat provides a real opportunity to do away with those toxic materials entirely, with excellent charging and discharging performance.

2) Self-healing 'living concrete'

Scientists have developed what they call living concrete by using sand, gel and bacteria.

Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.

The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command

3) Living robots
Tiny hybrid robots made using stem cells from frog embryos could one day be used to swim around human bodies to specific areas requiring medicine, or to gather microplastic in the oceans.
“These are novel living machines,” said Joshua Bongard, a computer scientist and robotics expert at the University of Vermont, who co-developed the millimetre-wide bots, known as xenobots.
“They’re neither a traditional robot nor a known species of animal. It’s a new class of artefact: a living, programmable organism.


4) 760mph trains

Hate commuting? Imagine, instead, your train carriage hurtling down a tunnel at the same speed as a commercial jet airliner. That’s the dream of PayPal, Tesla and SpaceX founder Elon Musk.

His Hyperloop system would see ‘train’ passengers travel at up to 760mph through a vacuum tube, propelled by compressed air and induction motors. A site has been chosen with the goal of starting test runs in two years. Once built, the loop will ferry passengers between San Francisco and LA in 35 minutes, compared to 7.5 hours by train.

5) Heart monitoring T-shirt
Wearable sports bands that measure your heart rate are nothing new, but as numerous studies have shown, the accuracy can vary wildly (especially if you rely on them to count calories). In general, that's fine if you just want an idea of how hard you're working out, but for professionals, accuracy is everything.

Using a single lead ECG printed into the fabric, this new t-shirt from smart materials company KYMIRA will accurately measure heart beats and upload them to the cloud via Bluetooth. Once there, algorithms process the data to accurately detect irregular heartbeats such as arrhythmia heart beats, which could prove life saving.

And it's not just athletes who could benefit. "The possibilities this product offers both sportspeople and the general public is astonishing," says Tim Brownstone, CEO and founder of KYMIRA. "We envisage developing this product to be used for clinical applications to allow those who may already suffer with heart conditions enough warning of a heart attack."

6) Coffee power

London’s coffee industry creates over 200,000 tonnes of waste every year, so what do we do with it? Entrepreneur Arthur Kay’s big idea is to use his company, bio-bean, to turn 85 per cent of coffee waste into biofuels for heating buildings and powering transport.

7) The AI scientist

Cut off a flatworm’s head, and it’ll grow a new one. Cut it in half, and you’ll have two new worms. Fire some radiation at it, and it’ll repair itself. Scientists have wanted to work out the mechanisms involved for some time, but the secret has eluded them. Enter an AI coded at Tufts University, Massachusetts. By analysing and simulating countless scenarios, the computer was able to solve the mystery of the flatworm’s regeneration in just 42 hours. In the end it produced a comprehensive model of how the flatworm’s genes allow it to regenerate.

Although humans still need to feed the AI with information, the machine in this experiment was able to create a new, abstract theory independently – a huge step towards the development of a conscious computer, and potentially a landmark step in the way we carry out research.

8) Space balloon

If you want to take a trip into space, your quickest bet might be to take a balloon. The company World View Enterprises wants to send tourists into the stratosphere, 32km above Earth, on hot air balloons.

Technically ‘space’ is defined as 100km above sea level, but 32km is high enough to witness the curvature of the Earth, just as Felix Baumgartner did on his space jump. The balloon flew its first successful test flight in June, and the company will start selling tickets in 2016 – at the bargain price of just £75,000 per person!

9) Cancer-detecting 'smart needles'

A “smart needle” has been developed by scientists in the UK which could speed up cancer detection and diagnosis times.

Researchers believe the technology could be particularly helpful in diagnosing lymphoma, reducing patient anxiety as they await their results. At present, people with suspected lymphoma often have to provide a sample of cells, followed by a biopsy of the node to be carried out for a full diagnosis, a process which can be time consuming.

The new device uses a technique known as Raman spectroscopy to shine a low-power laser into the part of the body being inspected, with the potential to spot concerns within seconds, scientists from the University of Exeter say.

“The Raman smart needle can measure the molecular changes associated with disease in tissues and cells at the end of the needle,” said professor Nick Stone, project lead, from the University of Exeter. “Provided we can reach a lump or bump of interest with the needle tip, we should be able to assess if it is healthy or not.”

10) Artificial neurons on silicon chips
Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.

“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret, from the University of Bath, who led the project.

“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.

“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.

Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.

No comments:

Post a Comment